Equivalence of multibreed animal models and hierarchical Bayes analysis for maternally influenced traits
نویسندگان
چکیده
منابع مشابه
Variational Bayes for Hierarchical Mixture Models
In recent years, sparse classification problems have emerged in many fields of study. Finite mixture models have been developed to facilitate Bayesian inference where parameter sparsity is substantial. Classification with finite mixture models is based on the posterior expectation of latent indicator variables. These quantities are typically estimated using the expectation-maximization (EM) alg...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملAnalytical Models For Genetics of Human Traits Influenced By Sex
Analytical models usually assume an additive sex effect by treating it as a covariate to identify genetic associations with sex-influenced traits. Their underlying assumptions are violated by ignoring interactions of sex with genetic factors and heterogeneous genetic effects by sex. Methods to deal with the problems are compared and discussed in this article. Especially, heterogeneity of geneti...
متن کاملHierarchical Bayes Models : A Practitioners Guide
Hierarchical Bayes models free researchers from computational constraints and allow researchers and practitioners to develop more realistic models of buyer behavior and decision making. Moreover, this freedom enables exploration of marketing problems that have proven elusive over the years, such as models for advertising ROI, sales force effectiveness, and similarly complex problems that often ...
متن کاملClassification using Hierarchical Näıve Bayes models
Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well performing set of classifiers is the Näıve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an instance are conditionally independent given the class of that instance. When this assumption is v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetics Selection Evolution
سال: 2010
ISSN: 1297-9686
DOI: 10.1186/1297-9686-42-20